99 research outputs found

    Synchronization in wireless communications

    Get PDF
    The last decade has witnessed an immense increase of wireless communications services in order to keep pace with the ever increasing demand for higher data rates combined with higher mobility. To satisfy this demand for higher data rates, the throughput over the existing transmission media had to be increased. Several techniques were proposed to boost up the data rate: multicarrier systems to combat selective fading, ultra wide band (UWB) communications systems to share the spectrum with other users, MIMO transmissions to increase the capacity of wireless links, iteratively decodable codes (e.g., turbo codes and LDPC codes) to improve the quality of the link, cognitive radios, and so forth

    Distributed detection and estimation in wireless sensor networks: resource allocation, fusion rules, and network security

    Get PDF
    This thesis addresses the problem of detection of an unknown binary event. In particular, we consider centralized detection, distributed detection, and network security in wireless sensor networks (WSNs). The communication links among SNs are subject to limited SN transmit power, limited bandwidth (BW), and are modeled as orthogonal channels with path loss, flat fading and additive white Gaussian noise (AWGN). We propose algorithms for resource allocations, fusion rules, and network security. In the first part of this thesis, we consider the centralized detection and calculate the optimal transmit power allocation and the optimal number of quantization bits for each SN. The resource allocation is performed at the fusion center (FC) and it is referred as a centralized approach. We also propose a novel fully distributeddistributed algorithm to address this resource allocation problem. What makes this scheme attractive is that the SNs share with their neighbors just their individual transmit power at the current states. Finally, the optimal soft fusion rule at the FC is derived. But as this rule requires a-priori knowledge that is difficult to attain in practice, suboptimal fusion rules are proposed that are realizable in practice. The second part considers a fully distributed detection framework and we propose a two-step distributed quantized fusion rule algorithm where in the first step the SNs collaborate with their neighbors through error-free, orthogonal channels. In the second step, local 1-bit decisions generated in the first step are shared among neighbors to yield a consensus. A binary hypothesis testing is performed at any arbitrary SN to optimally declare the global decision. Simulations show that our proposed quantized two-step distributed detection algorithm approaches the performance of the unquantized centralized (with a FC) detector and its power consumption is shown to be 50% less than the existing (unquantized) conventional algorithm. Finally, we analyze the detection performance of under-attack WSNs and derive attacking and defense strategies from both the Attacker and the FC perspective. We re-cast the problem as a minimax game between the FC and Attacker and show that the Nash Equilibrium (NE) exists. We also propose a new non-complex and efficient reputation-based scheme to identify these compromised SNs. Based on this reputation metric, we propose a novel FC weight computation strategy ensuring that the weights for the identified compromised SNs are likely to be decreased. In this way, the FC decides how much a SN should contribute to its final decision. We show that this strategy outperforms the existing schemes

    Dynamic Early Exiting Predictive Coding Neural Networks

    Full text link
    Internet of Things (IoT) sensors are nowadays heavily utilized in various real-world applications ranging from wearables to smart buildings passing by agrotechnology and health monitoring. With the huge amounts of data generated by these tiny devices, Deep Learning (DL) models have been extensively used to enhance them with intelligent processing. However, with the urge for smaller and more accurate devices, DL models became too heavy to deploy. It is thus necessary to incorporate the hardware's limited resources in the design process. Therefore, inspired by the human brain known for its efficiency and low power consumption, we propose a shallow bidirectional network based on predictive coding theory and dynamic early exiting for halting further computations when a performance threshold is surpassed. We achieve comparable accuracy to VGG-16 in image classification on CIFAR-10 with fewer parameters and less computational complexity

    Optimal quantization and power allocation for energy-based distributed sensor detection

    Get PDF
    We consider the decentralized detection of an unknown deterministic signal in a spatially uncorrelated distributed wireless sensor network. N samples from the signal of interest are gathered by each of the M spatially distributed sensors, and the energy is estimated by each sensor. The sensors send their quantized information over orthogonal channels to the fusion center (FC) which linearly combines them and makes a final decision. We show how by maximizing the modified deflection coefficient we can calculate the optimal transmit power allocation for each sensor and the optimal number of quantization bits to match the channel capacity

    Probabilité de décrochement d'un estimateur autodidacte du résidu de porteuse

    Get PDF
    Dans le contexte des communications numériques, nous nous sommes intéressés au problème de l'estimation autodidacte du résidu de fréquence porteuse par le biais d'un estimateur de type NLLS (Non-Linear Least Square). À faible Rapport Signal-à-Bruit ou à faible nombre d'échantillons, cet estimateur peut ne pas converger, autrement dit, peut « décrocher ». Nous nous sommes donc concentrés à évaluer théoriquement la probabilité d'apparition de ce décrochement. Estimer un résidu de porteuse de manière autodidacte via un estimateur NLS revient à vouloir estimer une harmonique perturbée par un bruit multiplicatif et additif. Or, dans la littérature existante, des expressions analytiques de la probabilité d'apparition du décrochement sont disponibles uniquement dans le contexte de l'estimation d'une harmonique seulement perturbée par un bruit additif. Le résultat nouveau de ce papier réside dans l'obtention d'une expression analytique de la probabilité de décrochement. Cette expression ne dépend que de la constellation des symboles émis et permet ainsi d'observer les évolutions du phénomène de décrochement en fonction de l'efficacité spectrale du système de communication

    When Infodemic Meets Epidemic: a Systematic Literature Review

    Full text link
    Epidemics and outbreaks present arduous challenges requiring both individual and communal efforts. Social media offer significant amounts of data that can be leveraged for bio-surveillance. They also provide a platform to quickly and efficiently reach a sizeable percentage of the population, hence their potential impact on various aspects of epidemic mitigation. The general objective of this systematic literature review is to provide a methodical overview of the integration of social media in different epidemic-related contexts. Three research questions were conceptualized for this review, resulting in over 10000 publications collected in the first PRISMA stage, 129 of which were selected for inclusion. A thematic method-oriented synthesis was undertaken and identified 5 main themes related to social media enabled epidemic surveillance, misinformation management, and mental health. Findings uncover a need for more robust applications of the lessons learned from epidemic post-mortem documentation. A vast gap exists between retrospective analysis of epidemic management and result integration in prospective studies. Harnessing the full potential of social media in epidemic related tasks requires streamlining the results of epidemic forecasting, public opinion understanding and misinformation propagation, all while keeping abreast of potential mental health implications. Pro-active prevention has thus become vital for epidemic curtailment and containment

    Distributed binary event detection under data-falsification and energy-bandwidth limitation

    Get PDF
    We address the problem of centralized detection of a binary event in the presence of falsifiable sensor nodes (SNs) (i.e., controlled by an attacker) for a bandwidth-constrained under-attack spatially uncorrelated distributed wireless sensor network (WSN). The SNs send their quantized test statistics over orthogonal channels to the fusion center (FC), which linearly combines them to reach a final decision. First (considering that the FC and the attacker do not act strategically), we derive (i) the FC optimal weight combining; (ii) the optimal SN to FC transmit power, and (iii) the test statistic quantization bits that maximize the probability of detection (Pd). We also derive an expression for the attacker strategy that causes the maximum possible FC degradation. But in these expressions, both the optimum FC strategy and the attacker strategy require
    • …
    corecore